"DTG" Digital Temperature Gauge
Style FH0, FH1, FH2, or FH5

SPECIFICATIONS
Compliance: 3-A, NEMA 4X, IP-66
Product Contact Surface: Fitting & Probe: 316L SS
Non-Product Contact Surface: Housing - 304 SS
Lens - Polysulfone
Process Temp. Range: 0 to 300°F (-18 to 150°C)
Units: Deg F and Deg C; field selectable
Resolution: 0.1°F or °C
Accuracy: +/- .5°F (+/-0.3°C)
Ambient Operating Limits: 40 to 140°F (4.4 to 60°C)
Ambient Temp. Stability: Better than 0.1°C per 10°C ambient shift
Storage Temp.: 32 to 140°F (0 to 65°C)

Display:
Error Warning:
Power:
Battery Life:
Vibration:
Warranty:
Display Update:
Calibration Adjustment:
Surface Finish:

Display: LCD: 4 digit main display, 6 digit secondary; 0.9" high contrast LCD
Error Warning: LCD flashing
Power: 2 AA Industrial Grade Batteries (Style 0,1,5);
Customer supplied 9-30 VDC(Style 2)
Battery Life: Style 0,1,5: 12 months typical
Style 2: external power
Vibration: 10 to 60 Hz, 2g
Warranty: 2 year
Display Update: 3 seconds
Calibration Adjustment: Via onboard switches; single point offset adjust
Surface Finish: Ra max = 32 micro inches

Battery Replacement
A three segment battery indicator allows the operator to monitor battery life of the DTG, and plan ahead for a battery change. When a low threshold is reached, the final indicator bar blinks on and off. Internal circuitry regulates battery voltages to ensure all factory specifications are met, even with a decrease in battery voltage. When an unacceptable level is reached, the DTG will shut down. Internal flash memory retains all prior calibration, and only replacement of the batteries is required to resume operation. Units with optional AC switch module do not require batteries.

<table>
<thead>
<tr>
<th>Battery Level</th>
<th>Indicator</th>
<th>NOTE: When removing batteries, wait a minimum of (2) two minutes before re-installing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Battery</td>
<td>8888</td>
<td></td>
</tr>
<tr>
<td>Decreased Battery</td>
<td>8888</td>
<td></td>
</tr>
<tr>
<td>Low Battery</td>
<td>8888 8888</td>
<td></td>
</tr>
</tbody>
</table>

Battery Replacement Instructions:
- DO NOT attempt to loosen RTD probe from enclosure or elbow
- Fitting may vary
- Example shown

NOTE: Remove back plate to access Value, Run, and Menu keys used for programming.
DTG Model “FH1” - Secondary RTD Wiring

Wiring Diagram - 3 WIRE RTD

<table>
<thead>
<tr>
<th>Terminal 2 - White (COM.)</th>
<th>Terminal 3 - Red (COM.)</th>
<th>Terminal 4 - Green (SIGNAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTICE</td>
<td>NOTICE</td>
<td>NOTICE</td>
</tr>
<tr>
<td>Install jumper: Terminal 5 to Terminal 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locate via side facing terminal screw</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wiring Diagram - 4 WIRE RTD

<table>
<thead>
<tr>
<th>Terminal 2 - White (COM.)</th>
<th>Terminal 3 - Red (COM.)</th>
<th>Terminal 4 - Green (SIGNAL)</th>
<th>Terminal 5 - Black (SIGNAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTICE</td>
<td>NOTICE</td>
<td>NOTICE</td>
<td>NOTICE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Anderson color codes indicated

DTG Model “FH2” - Switch Wiring

Wiring Diagram - Utilizing on-board switching only

<table>
<thead>
<tr>
<th>Terminal 1 - Red (+PWR Use 9-30 VDC)</th>
<th>Terminal 2 - Black (-PWR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 3 - Green (Relay COM.)</td>
<td>Terminal 4 - Blue (Relay 1 - N.O.)</td>
</tr>
<tr>
<td>Terminal 5 - White (Relay 2 - N.O.)</td>
<td></td>
</tr>
</tbody>
</table>

External DC supply must be used in order to utilize on-board switching

9-30 VDC, 250 mA typical external power required to energize relays

N.O. Relay contacts rated for 1 amp max @ 24 VDC

If customer supplied, cable requirements are:

5 conductor, stranded, 18-24 AWG.

0.16” to 0.31” Cable Sheath O.D.

Wiring Diagram - Utilizing “Optional” external AC powered switch module

<table>
<thead>
<tr>
<th>Terminal 1 of QDR</th>
<th>Terminal 2 & 3 of QDR</th>
<th>Terminal 4 of QDR</th>
<th>Terminal 5 of QDR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remote Module Part Number: PM0606004

AC power must be used in order to utilize EXTERNAL switching module

If customer supplied from module to DTG, cable requirements are:

5 conductor, stranded, 18-24 AWG.

0.16” to 0.31” Cable Sheath O.D.
Change Offset Value

The “Offset Value” function is used to apply a linear offset factor to the device. If your DTG shows a repeatable discrepancy (less than 1 degree) throughout the test range, this function may be used to remove the differential.

Example:
- Reference reads 32.0°F and DTG reads 32.3°F
- Reference reads 150.0°F and DTG reads 150.3°F
- Reference reads 212.0°F and DTG reads 212.3°F

“Offset Value” of “-0.3°F” programmed will remove discrepancy

CAUTION: Be sure to use only an NIST traceable reference thermometer that is known accurate, and within its specified calibration period.

1. Flip Run switch to the down position.
2. Press Menu switch up and release once to go to Offset screen.
3. Use Value switch to set Offset from 0.0 to +/-5.0.
4. Flip Run switch to the middle position.

Change Unit of Measure

The DTG may be programmed to read in either Degrees F or Degrees C. When changing from one mode to another, any “User Calibration” points are converted automatically to their respective unit of measure – no additional programming is required.

1. Flip Run switch to the down position.
2. Press Menu switch down and release once to go to Unit screen.
3. Use Value switch to alternate between °F and °C.
4. Flip Run switch to the middle position.

Change Decimal Position

The DTG is capable of displaying to the nearest WHOLE DEGREE, or with the addition of a decimal point, to the NEAREST TENTH degree. Modifying this parameter requires no additional programming changes to “User Calibration” points.

1. Flip Run switch to the down position.
2. Press Menu switch down and release once to go to Unit screen.
3. Press Menu switch down and release once to go to Dampening Factor screen.
4. Press Menu switch down and release once to go to Decimal Position screen.
5. Use Value switch to alternate select decimal position.
6. Flip Run switch to middle position.

WHOLE DEGREE display will ROUND DOWN to previous whole number.

Example: Process = 181.9 °F Display = 181°F

Change Dampening Factor

The “Dampening Factor” is used as a means to slow down the reaction rate of the unit. Under most circumstances, this value should be set to “0.” If a process has very erratic temperature shifts, and the display fluctuates, introduction of a small dampening factor may smooth display.

1. Flip Run switch to the down position.
2. Press Menu switch down and release once to go to Unit screen.
3. Press Menu switch down and release once to go to Dampening Factor screen.
4. Use Value switch to set Dampening Factor from 0.0 to 10.0.
5. Flip Run switch to middle position.

Restore Factory Settings

The “Restore Factory Settings” function will return the DTG to the factory shipped calibration.

1. Flip Run switch to the down position.
2. Press Menu switch down and release once to go to Unit screen.
3. Press Menu switch down and release once to go to Dampening Factor screen.
4. Press Menu switch down and release once to go to Decimal Position screen.
5. Press Menu switch down and release once to go to Factory Reset screen.
6. Hold Value switch up for 5 seconds to restore factory settings.
7. Flip Run switch to middle position.

WHOLE DEGREE display will ROUND DOWN to previous whole number.

Example: Process = 181.9 °F Display = 181°F

Change Offset Value

The “Restore Factory Settings” function will return the DTG to the factory shipped calibration.

1. Flip Run switch to the down position.
2. Run switch to the down position.
3. Press Menu switch down and release once to go to Unit screen.
4. Press Menu switch down and release once to go to Dampening Factor screen.
5. Use Value switch to set Dampening Factor from 0.0 to 10.0.
6. Flip Run switch to middle position.
Change Alarm 1 Setpoint
The DTG has alarm capability to signal with flashing text when a temperature is too high or too low.

1. Flip Run switch to the up position.
2. Use the Value switch to set the Setpoint.
3. The value of Alarm 1 Setpoint is saved after the Run switch is returned to the middle position.

Change Alarm 2 Setpoint
The DTG has alarm capability to signal with flashing text when a temperature is too high or too low.

1. Flip Run switch to the up position.
2. Press the Menu switch down and release once to go to Alarm 1 Action screen.
3. Press the Menu switch down and release once to go to Alarm 1 Hysteresis screen.
4. Press the Menu switch down and release once to go to Alarm 2 Setpoint screen.
5. Use the Value switch to set the Setpoint.
6. The value of Alarm 2 Setpoint is saved after the Run switch is returned to the middle position.

Change Alarm 1 Action
The “Alarm Action” can be set to HI to activate alarm if temperature goes above a max temp, LO if temperature goes below a min temp, or OFF.

1. Flip Run switch to the up position.
2. Press the Menu switch down and release once to go to Alarm 1 Action screen.
3. Use the Value switch to set the Action to either HI, LO or OFF.
4. The value of Alarm 1 Action is saved after the Run switch is returned to the middle position.

Change Alarm 1 Hysteresis
The “Hysteresis” function delays the alarm by a set value. Example: Alarm is set to a HI value of 76. The hysteresis value is set to 2. Alarm will activate when temp reaches 78.

1. Flip Run switch to the up position.
2. Press the Menu switch down and release once to go to Alarm 1 Action screen.
3. Press the Menu switch down and release once to go to Alarm 1 Hysteresis screen.
4. Press the Menu switch down and release once to go to Alarm 2 Setpoint screen.
5. Use the Value switch to set the Hysteresis.
6. The value of Alarm 1 Hysteresis is saved after the Run switch is returned to the middle position.

Change Alarm 2 Hysteresis
The “Hysteresis” function delays the alarm by a set value. Example: Alarm is set to a HI value of 76. The hysteresis value is set to 2. Alarm will activate when temp reaches 78.

1. Flip Run switch to the up position.
2. Press the Menu switch down and release once to go to Alarm 1 Action screen.
3. Press the Menu switch down and release once to go to Alarm 1 Hysteresis screen.
4. Press the Menu switch down and release once to go to Alarm 2 Setpoint screen.
5. Press the Menu switch down and release once to go to Alarm 2 Action screen.
6. Press the Menu switch down and release once to go to Alarm 2 Hysteresis screen.
7. Use the Value switch to set the Hysteresis.
8. The value of Alarm 2 Hysteresis is saved after the Run switch is returned to the middle position.