Introduction

Your Anderson GK Series DC Process is one model in a family of 1/8 DIN units which offers breakthrough display technology as well as easy-to-program single-line parameters. Designed to provide instant visual feedback regarding an application’s key input value, the GK Series unit not only has a 0.7’’ high LED display (27% larger than other 1/8 DIN units), but also the ability to change display color based on process status (programmable parameter in Operation Mode). Easy programming is made possible via a help function and a secondary legend display.

This manual will guide you through the installation and wiring of your GK Series unit with information on proper panel mounting and rear terminal layout and wiring instructions. In addition, the instrument’s operation, programming, and configuration modes are thoroughly explained. The Operation Mode provides day to day operation and allows editing of preset values. The Program Mode enables the configuration of various parameters prior to initial operation. These parameters include those for basic configuration as well as other selectable features which will enhance the functionality and usability of the device. The Configuration Mode allows selection of how outputs and special functions are utilized.

This manual also provides information on the GK Series DC Process’ alarms; transistor, relay, and linear outputs; product specifications; and ordering and warranty procedures.

Warranty

Standard products manufactured by the Company are warranted to be free from defects in workmanship and material for a period of one year from the date of shipment, and products which are defective in workmanship or material will be repaired or replaced, at the option of the Company, at no charge to the Buyer. Final determination as to whether a product is actually defective rests with the Company. The obligation of the Company hereunder shall be limited solely to repair and replacement of products that fail within the foregoing limitations, and shall be conditioned upon receipt by the Company of written notice of any alleged defects or deficiency promptly after discovery within the warranty period, and in the case of components or units purchased by the Company, the obligation of the Company shall not exceed the settlement that the Company is able to obtain from the supplier thereof. No products shall be returned to the Company without its prior consent. Products which the Company consents to have returned shall be shipped F.O.B. the Company’s factory. The Company cannot assume responsibility or accept invoices for unauthorized repairs to its components, even though defective. The life of the product of the Company, depends, to a large extent, upon the type of usage thereof, and the Company makes no warranty as to fitness of its products for specific applications by the Buyer nor as to period of service unless the Company specifically agrees otherwise in writing after the proposed usage has been made known to it.

The foregoing warranty is exclusive and in lieu of all other warranties expressed or implied, including, but not limited to any warranty of merchantability or of fitness for a particular purpose.

Features

- AWESOME 0.7” high digit LED display
- Programmable color change display based on an event
- Programmable help function and secondary legend display
- High and low alarm outputs
- mA inputs to 50mA, DCV inputs to ±10 Volts and ±100 mV
- Tare function
- Standard outputs: two NPN transistors & one relay (optional 2nd relay)
- 100 ms sample time with 0.03% accuracy
- Optional RS-485 plug in card
- CE approved

Index

- Installation
- Panel Mounting
- Wiring
- Operation
- Front Panel
- Operation Mode
- Programming
- Program Mode
- Configuration
- Configuration Mode
- Appendix A
- Specifications
- General
- Ordering Information
- Warranty

ANDERSON INSTRUMENT CO. • 156 AURIESVILLE RD. • FULTONVILLE, NY 12072 USA • 800-833-0081 • FAX 518-922-8997

www.andersoninstrumentco.com

© February 2000
This bulletin is designed to cover sensor input wiring for the “Awesome Temperature” and “Awesome DC Process” digital indicators.

Awesome Model: Temperature

Follow the diagram as illustrated for proper wiring of RTD Temperature Sensors.

Color codes given for Anderson pre-wired RTD Temperature Sensor.

Jumper must be in place from Terminal 1 to Terminal 2.

Awesome Model: DC Process

Follow the diagram as illustrated for proper wiring of EXTERNALLY POWERED mA Sensors.

CAUTION: Remove any factory installed jumper going from Terminal 1 to Terminal 5 - Not needed for this wiring configuration.

Awesome Model: DC Process

Follow the diagram as illustrated for proper wiring of INTERNALLY POWERED mA Sensors.

NOTE: Jumper going from Terminal 1 to Terminal 5 must be present for proper operation.

NOTE: All model DC Process Awesome Indicators are supplied with on-board loop power capability.
INSTALLATION

PANEL MOUNTING

The instrument can be mounted in a panel with a thickness of up to 6mm. The cutout(s) should be made based on the recommended panel opening illustrated in the drawing above. Insert the unit in the panel through the cutout. Ensure that the panel gasket is not distorted and the instrument is positioned squarely against the panel. Slide the mounting clamp into place on the instrument, as shown to the left, and push it forward until it is firmly in contact with the rear face of the mounting panel and the tabs on the bracket arm are seated in the mounting grooves on the side of the unit.

The electronic components of the instrument can be removed from the housing after installation without disconnecting the wiring. To remove the components, grip the side edges of the panel and pull the instrument forward. Take note of orientation of the unit for subsequent replacement in the housing.

APPENDIX A

SPECIFICATIONS

Process Input
Range: To 50 mA, ±10 Volts DC, ±100 mV
Accuracy: ± 0.01% of span
Sample Rate: 700 ms
Resolution: 14 bits
Sensor Break: Detected within 2 seconds

Control Inputs
Type: Sourcing, Edge Sensitive
Logic: Low ≤ 2.0 VDC, High ≥ 3.0
Impedance: 4.7 KΩ to 0 Voltage - Sourcing
Response Time: 25 ms
Function: Programmable

Outputs
Solid State: NPN open collector, 30 VDC max, 100 mA max.
Relay: SPDT, 5A resistive @ 110VAC
Latency: 75 µ seconds, plus 8 ms for relay pull-in

Linear Outputs
Ranges: 0-20mA, 4-20mA, 0-10V, 2-10V, 0-5V, 1-5V
Accuracy: ±0.25% (mA at 250Ω, V at 2KΩ); degrades linearly to ±0.5%
Resolution: 8 bits in 250ms (10 bits in 1s typ.)
Update: Approximately 4/s
Load Impedance: mA Ranges: 500Ω max.; V Ranges: 500Ω min.

Approvals
General: CE
EMC Susceptibility: Complies with EN50082-1: 1992, EN50082-1: 1995
EMC Emissions: Complies with EN50081-1: 1992, EN50081-1: 1994
Safety: Complies with EN61010-1: 1993

Communication
Type: Serial asynchronous, UART to UART
Data Format: Open ASCII: One start bit, even parity seven data bits, one stop bit
Physical Layer: RS-485
Maximum Zones: 99
Baud Rate: Selectable from 9600, 4800, 2400, or 1200

Electrical
Supply Voltage: 96-284 VAC, 50/60 Hz, or 20-50 VAC/VDC
Power Consumption: 4 Watts
Access. Power Supply: 24 VDC @ 30 mA

Display
Type: Red/Green, 7 segment LED, 5 digits primary display, single digit secondary display
Height: 0.71" (18mm) primary display, 0.3" (7mm) secondary display
Annunciators: Output 1 & 2 status

Physical
Dimensions: 48mm x 96mm, 110mm deep
Mounting: Panel mount (mounting bracket supplied), 45mm x 92mm cutout
Terminals: Screw type - combination head
Front Panel Rating: NEMA 4X/IEC IP65
Case Material: GE Lexan 940
Weight: 0.96 lbs.

Environmental
Operating Temp.: 0° to 55° Celsius, 32° to 131° Fahrenheit
Storage Temp.: -30° to 60° Celsius, -4° to 176° Fahrenheit
Relative Humidity: 20% to 95% non-condensing
INSTALLATION

REAR TERMINAL CONNECTIONS

- **Transistor Outputs**
 - Your unit comes standard with 2 NPN outputs which are activated by each of the alarms. Transistor Output 1, which is tied to Alarm 1, is on Terminal #7. Transistor Output 2, which is tied to Alarm 2, is on Terminal #9. Terminal #8 serves as the common connection for both transistor outputs.

- **Relay Outputs**
 - Your unit comes standard with a relay output which is tied to Alarm 1. Terminal #19 is NC, Terminal #20 is common, and Terminal #21 is NO. A second relay output tied to the operation of Alarm 2 can be added as an option at the time of order or later installed in the field. Terminal #22 is NC, Terminal #23 is common, and Terminal #24 is NO.

- **DC Inputs**
 - Your unit accepts millivolt, Volt, or milliamp DC ranges. Terminal #1 is used for mV, V, or mA negative inputs. Terminal #2 is used for V positive inputs, while Terminal #3 is used for mV or mA positive inputs.

- **Input Power**
 - For an AC powered unit, Terminal #13 serves as the line or Hot side connection for AC powered units and as the positive side for DC powered units. The neutral side for AC powered units and the negative side for DC powered units are connected to Terminal #14.

- **Serial Communication**
 - An RS-485 communication board, utilizing ASCII protocol, can be installed as an option. Terminals #16 & #17 serve as the B and A connections respectively, while Terminal #18 is connected as the common.

- **Linear Output**
 - An option board may be installed that provides a 10 bit linear output signal relative to the Process Value. Terminal #12 serves as the line or Hot side connection for AC powered units and as the positive side for DC powered units. The neutral side for AC powered units and the negative side for DC powered units are connected to Terminal #14.

Configuration MODE Continued

- **Retransmission Output**
 - Function: Selects the range of the retransmission output
 - Adjustment Range: None, 0-5 Volts DC, 0-10 Volts DC, 0-20 mA, 4-20 mA
 - Default Value: None

- **Option Selection**
 - Function: Determines the function of the board installed in the option slot
 - Adjustment Range: No Input, Security: When the digital input is active, the Program and Configuration Modes cannot be accessed, Tare: When the digital input is activated the currently measured value is zeroed out and will remain as a constant offset, Communication: The slot will be used for RS-485 communication
 - Default Value: None

- **Totalizer Scale Factor**
 - Function: Sets the time base used for the totalization calculation. This value should be set the same as the time base used for the engineering units which appear on the display. Ex: If the display is calibrated to display GPM, set the Totalizer scale factor to minutes
 - Adjustment Range: Seconds, Minutes, Hours
 - Default Value: Seconds

WIRING

Control/Digital Inputs

- A digital input board, which utilizes Terminals #16 & #17, can be installed as an option. The input can be programmed in Configuration Mode to perform one of two functions:
 - Tare: When activated, the unit will create an automatic offset by referencing the currently measured value as the new zero point.
 - Security: When activated, the Program and Calibration Modes will not be accessible from the front panel.

Please note that this option is mutually exclusive with the RS-485 serial communication option.
Operation

Front Panel

- **Down Key**: Scroll Key, Program Key, Reset Key

Key Functions

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down</td>
<td>In Operation Mode: Used in Edit Operation to decrement the digit highlighted by the Scroll key. Used in Program & Config. Modes to decrement the digit highlighted by the Scroll key. If the setting is a numerical value, present next in the series of choices for that parameter.</td>
</tr>
<tr>
<td>Scroll</td>
<td>In All modes: Moves the unit into Edit Operation, which is indicated by the left most digit flashing. Successive presses of the key are used to move to the digit to be edited. Wrap around will occur from least significant digit to most significant digit.</td>
</tr>
<tr>
<td>Program</td>
<td>In Operation Mode: Used to move between the process value display & the presets and to enter an edited preset value. Holding the key down for 3 seconds will cause the unit to return to Operation Mode. Used to move from one parameter to the next and enter the edited parameter values. Holding the key down for 3 seconds will cause the unit to return to Operation Mode.</td>
</tr>
<tr>
<td>Reset</td>
<td>In Operation Mode: Resets a latched alarm if pressed while the process value is being viewed. Pressing this key while viewing the max or min value will cause those values to be reset. In Program & Config. Modes: No function.</td>
</tr>
<tr>
<td>Down & Scroll</td>
<td>In All modes: Will abort an Edit Operation and return the preset/parameter to its previous value.</td>
</tr>
</tbody>
</table>

Display Functions

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>In Operation Mode: Default display is the Process Value. Can be scrolled using the program key to display other Operation Mode values. If the “Help” function is enabled, this display will first show the parameter description for 3 seconds (example - page 6). In Program & Config. Modes: Displays the value or selection for the current parameter. If the “Help” function is enabled, this display will first show the parameter description for 3 seconds (example - page 7).</td>
</tr>
<tr>
<td>Secondary</td>
<td>In Operation Mode: Provides an alpha or numeric indentification of the value on the primary display. This display is blank when the Process Value is being shown. In Program & Config. Modes: Provides a 1 digit alpha or numeric character to indicate which parameter value is being shown on the primary display.</td>
</tr>
</tbody>
</table>

Output Indicators

- **Secondary Display**: Provides an alpha or numeric identification of the value on the primary display.
- **Primary Display**: Default display is the Process Value. Can be scrolled using the program key to display other Operation Mode values. If the “Help” function is enabled, this display will first show the parameter description for 3 seconds (example - page 6).

Configuration

Configuration Mode Continued

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down & Program</td>
<td>In Config. mode: Holding down both keys for 3 seconds will cause the unit to return to Operation Mode. In Operation & Program Modes: Holding down both keys for 3 seconds will cause the unit to enter to Config. Mode.</td>
</tr>
</tbody>
</table>

Output 1 Usage

Function: Determines how the transistor and relay for output 1 will operate

- **Alarm 1, Non latching, Direct Action**: The output will be On when Alarm 1 is active, and turn Off once the Alarm 1 condition is no longer present
- **Alarm 1, Latching, Direct Action**: The output will be On when Alarm 1 is active, and turn Off when the Alarm 1 condition is present
- **Alarm 1, Non latching, Reverse Action**: The output will be On when Alarm 1 is inactive, and turn Off when the Alarm 1 condition is present
- **Alarm 1, Latching, Reverse Action**: The output will be On when Alarm 1 is inactive, and turn Off only when reset via the front panel

Logical OR of Alarm 1 & 2

- **Alarm 2, Direct Action**: The output will be On when Alarm 2 is activate, and turn Off once the Alarm 2 condition is no longer present
- **Alarm 2, Reverse Action**: The output will be On when Alarm 2 is inactive, and turn Off when the Alarm 2 condition is present
- **Logical OR of Alarm 1 & 2, Direct Action**: The output will be On when a logical OR condition between Alarm 1 and Alarm 2 is present
- **Logical OR of Alarm 1 & 2, Reverse Action**: The output will be On when a logical OR condition between Alarm 1 and Alarm 2 is not present

Default Value

- **Alarm 1, Non latching, Direct Action**: Default Value: Alarm 1, Non latching, Direct Action
- **Alarm 2, Direct Action**: Default Value: Alarm 2, Direct Action
- **Logical OR of Alarm 1 & 2, Direct Action**: Default Value: Alarm 1 and Alarm 2 is present
- **Logical OR of Alarm 1 & 2, Reverse Action**: Default Value: Alarm 1 and Alarm 2 is not present
Power Supply Frequency

Function: Although the instrument is designed to handle either 50 or 60 Hz inputs automatically, to ensure proper filtering of the input signal, it is necessary to set the input frequency of the primary input power.

Adjustment Range:

| 50 Hz | 60 Hz |

Default Value: 60 Hz

Alarm 1 Type

Function: Sets the action of the alarm to one of the following choices:

Adjustment Range:

- **Process High:** Alarm will activate when the process value equals or exceeds the Alarm 1 setting.
- **Process Low:** Alarm will activate when the process value equals or is less than the Alarm 1 setting.
- **No Alarm:** Alarm 1 will be inactive.

Default Value: Process High Alarm

Alarm 2 Type

Function: Sets the action of the alarm to one of the following choices:

Adjustment Range:

- **Process High:** Alarm will activate when the process value equals or exceeds the Alarm 2 setting.
- **Process Low:** Alarm will activate when the process value equals or is less than the Alarm 2 setting.
- **No Alarm:** Alarm 2 will be inactive.

Default Value: No Alarm

Alarm 1 Value

Definition: Defines the process value at or above which Alarm 1 will activate if set to Process High Alarm in Configuration Mode or the process value at or below which Alarm 1 will be active if set to Process Low Alarm in Configuration Mode. The default value is 100.00.

Alarm 2 Value

Definition: Defines the process value at or above which Alarm 2 will activate if set to Process High Alarm in Configuration Mode or the process value at or below which Alarm 2 will be active if set to Process Low Alarm in Configuration Mode. The default value is 100.00.

Total

Definition: Displays the total value based upon integration of the input signal using a programmable time base. The value can be reset (only while being displayed) by pressing the Reset Key.

Alarm 1 Elapsed Time

Definition: Displays the accumulated amount of time the alarm 1 condition was present. This value will continue to accumulate until it is reset by pressing the Reset Key (while the value is being displayed). The value is displayed in mm:ss up to 99 min 59 secs., then changes over to mmm.m

Parameter descriptions will not appear on the primary display if the "Help" function has been disabled.
OPERATION

OPERATION MODE Continued

OTHER OPERATING DISPLAYS

Over Range Display: Appears if the process value becomes higher than the input full scale value.

Under Range Display: Appears if the process value becomes lower than the input full scale value.

Sensor Break Display: Appears if the unit does not receive an input signal for two seconds.

CHANGING AN ALARM VALUE

Default display is the Process Value.

From the Process Value display, scroll through the other Operation Mode values until Alarm 1 appears.*

Use the Scroll Key to move from left to right and highlight the digit that needs to be changed. Wrap around will occur from the least significant to the most significant digit.

Use the Down Key to decrement the digit until the desired value appears. The display will wrap around from 0 to 9.

After the desired digits have been changed, press the Program Key to enter the new value. The display will wrap around from 0 to 9.

Parameter descriptions will not appear on the primary display if the “Help” function has been disabled.

** Edit Operation cannot be accessed if the Preset Lock has been enabled in Program Mode.

CONFIGURATION

CONFIGURATION MODE

ENTERING CONFIGURATION MODE AND BASIC OPERATION

The Configuration Mode can be accessed from the Operation Mode by holding the Down and Program Keys for 3 seconds.

The name of the first parameter will appear on the primary display.*

Successive presses of the Program Key will scroll the display through the remaining parameters in the Configuration Mode. To exit Configuration Mode, hold the Down and Program Keys for 3 seconds.

Parameter names will not appear on the main display if the “Help” function has been disabled in Program Mode.

PARAMETER SEQUENCE

Input Range
Function: Selects the DC input range
Adjustment Range:

<table>
<thead>
<tr>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2200 mA</td>
<td>0-20 mA</td>
</tr>
<tr>
<td>2200 mA</td>
<td>4-20 mA</td>
</tr>
<tr>
<td>2400 mA</td>
<td>10-50 mA</td>
</tr>
<tr>
<td>2400 mA</td>
<td>0-5 Volts DC</td>
</tr>
<tr>
<td>2400 mA</td>
<td>1-5 Volts DC</td>
</tr>
<tr>
<td>2400 mA</td>
<td>±50 mV</td>
</tr>
<tr>
<td>2900 mA</td>
<td>±10 Volts DC</td>
</tr>
<tr>
<td>2900 mA</td>
<td>±100 mV</td>
</tr>
<tr>
<td>3300 mA</td>
<td>±1 Volts DC</td>
</tr>
<tr>
<td>3300 mA</td>
<td>±10 Volts DC</td>
</tr>
</tbody>
</table>

* Parameter descriptions will not appear on the primary display if the “Help” function has been disabled.

** Edit Operation cannot be accessed if the Preset Lock has been enabled in Program Mode.
PROGRAMMING

PROGRAM MODE Continued

Alarm Lock
Function: Determines whether the Alarm Values can be changed via the front panel
Adjustment Range:
- Enable: Alarm values can be viewed and changed
- Disable: Alarm values are read only
Default Value: Enable

Help Prompt
Function: Determines whether the multi-character parameter name will appear on the main display for 3 seconds prior to the parameter value appearing
Adjustment Range:
- Help - Yes: Multi-character parameter descriptions will appear on the primary display. The value associated with that parameter will appear by pressing the scroll key or waiting for 3 seconds
- Help - No: Only the parameter values will appear on the primary display. The parameter can be identified by a single digit in the secondary display
Default Value: Help - Yes

ENTERING PROGRAM MODE AND BASIC OPERATION

The Program Mode can be accessed from the Operation Mode by holding the Program Key for 3 seconds.

* Parameter names will not appear on the main display if the "Help" function has been disabled in Program Mode.

Pressing the Scroll Key or no key activity for 3 seconds will display the value for that parameter. The secondary display will indicate the one digit identifier for the parameter. The digit in the secondary display will flash to indicate the unit is in Program Mode. If the Scroll Key was pressed (instead of waiting 3 seconds), the unit is in Edit Operation, as indicated by the MSD flashing. If there has been no key activity for 3 seconds, press the scroll key to enter Edit Operation (MSD flashing). Use the scroll and edit buttons to change the value as in Operation Mode, described on page 6. Press the Program Key to enter any changes.

PARAMETER SEQUENCE

Scaling Point 1
Function: Sets the first sensor input value point (based on percentage of full scale) which will be used in establishing a curve for scaling sensor inputs into engineering unit values. Pressing the Reset Key will serve as a teach function and input the sensor value currently being read
Adjustment Range: 0 to 100%
Default Value: 0.00

Display Point 1
Function: Provides the engineering unit value that will be displayed corresponding to the sensor input value set in the Scaling Point 1 parameter
Adjustment Range: -19999 to 99999
Default Value: 0.00
Decimal Position

Function: Sets the position of the decimal point for use in displaying the process and alarm values

Adjustment Range: -19999 to 99999
Default Setting: 0.00

Display Point 2

Function: Provides the engineering unit value that will be displayed corresponding to the sensor input value set in the Scaling Point 2 parameter

Adjustment Range: -19999 to 99999
Default Value: 100.00

The scaling process can be repeated up to a total of 10 scale and display points. Scale and display points will continue to be offered (up to 10 total) as long as 100% (the full scale limit) has not been selected as a scaling point.

Process Variable Offset

Function: Corrects a known offset of the input in order to more accurately display the process value

Adjustment Range: -19999 to 99999
Default Value: 0.00

Input Filter Time

Function: Filters the input over a user definable time period to minimize the effect on the Process Value of any extraneous impulses

Adjustment Range: 0.0 (Off) to 100.0
Default Value: 2.0

Communication Address

Function: Defines the unique communication address of the instrument

Adjustment Range: 1 to 99
Default Value: 1

Baud Rate

Function: Selects the serial communication speed

Adjustment Range:
- 1200 BPS
- 2400 BPS
- 4800 BPS
- 9600 BPS

Default Value: 4800

Display Color Change

Function: Defines the color of the display for prior to and after the preset value is reached

Adjustment Range:
- Red: The display will always be red
- Green: The display will always be green
- Green to Red: The display will be green when no alarm condition is present. It will turn red when either alarm is active
- Red to Green: The display will be red when no alarm condition is present. It will turn green when either alarm is active

Default Value: Green to Red
ScA 2

Scaling Point 2

Function: Sets the second sensor input value point (based on percentage of full scale) which will be used in establishing a curve for scaling sensor inputs into engineering unit values. Pressing the Reset Key will serve as a teach function and input the sensor value currently being read.

Adjustment Range: -19999 to 99999

Default Setting: 0.00

DiS

Display Point 2

Function: Provides the engineering unit value that will be displayed corresponding to the sensor input value set in the Scaling Point 2 parameter.

Adjustment Range: -19999 to 99999

Default Value: 100.00

The scaling process can be repeated up to a total of 10 scale and display points. Scale and display points will continue to be offered (up to 10 total) as long as 100% (the full scale limit) has not been selected as a scaling point.

Decimal Position

Function: Sets the position of the decimal point for use in displaying the process and alarm values.

Adjustment Range: 0 to 0.000

Default Setting: 0.00

Retransmission Scale Minimum (Appears only if a retransmission output has been enabled in Configuration mode)

Function: Defines the lower end of the linear scale for the retransmission output by defining the value equated to the minimum output signal.

Adjustment Range: -19999 to 99999

Default Value: 0.00

Retransmission Scale Maximum (Appears only if a retransmission output has been enabled in Configuration mode)

Function: Defines the upper end of the linear scale for the retransmission output by defining the value equated to the maximum output signal.

Adjustment Range: -19999 to 99999

Default Value: 100.00

Process Variable Offset

Function: Corrects a known offset of the input in order to more accurately display the process value.

Adjustment Range: -19999 to 99999

Default Value: 0.00

Input Filter Time

Function: Filters the input over a user definable time period to minimize the effect on the Process Value of any extraneous impulses.

Adjustment Range: 0.0 (Off) to 100.0

Default Value: 2.0

Communication Address (Appears only if a communication board is installed and activated)

Function: Defines the unique communication address of the instrument.

Adjustment Range: 1 to 99

Default Value: 1

Baud Rate (Appears only if a communication board is installed and activated)

Function: Selects the serial communication speed.

Adjustment Range:

- **1200**
- **2400**
- **4800**
- **9600**

Default Value: 4800

Display Color Change

Function: Defines the color of the display for prior to and after the preset value is reached.

Adjustment Range:

- **Red:** The display will always be red.
- **Green:** The display will always be green.
- **Green to Red:** The display will be green when no alarm condition is present. It will turn red when either alarm is active.
- **Red to Green:** The display will be red when no alarm condition is present. It will turn green when either alarm is active.

Default Value: Green to Red
PROGRAMMING

ENTERING PROGRAM MODE AND BASIC OPERATION

The Program Mode can be accessed from the Operation Mode by holding the Program Key for 3 seconds.

Successive presses of the Program Key will scroll the display through the remainsing parameters in the Program Mode. To exit Program Mode, hold the Program Key for 3 seconds.

* Parameter names will not appear on the main display if the “Help” function has been disabled in Program Mode.

Help Prompt
Function: Determines whether the multi-character parameter name will appear on the main display for 3 seconds prior to the parameter value appearing
Adjustment Range:
Help - Yes: Multi-character parameter descriptions will appear on the primary display. The value associated with that parameter will appear by pressing the scroll key or waiting for 3 seconds
Help - No: Only the parameter values will appear on the primary display. The parameter can be identified by a single digit in the secondary display
Default Value: Help - Yes

Alarm Lock
Function: Determines whether the Alarm Values can be changed via the front panel
Adjustment Range:
Enable: Alarm values are read only
Disabled: Alarm values can be viewed and changed
Default Value: Disabled

Scaling Point 1
Function: Sets the first sensor input value point (based on percentage of full scale) which will be used in establishing a curve for scaling sensor inputs into engineering unit values. Pressing the Reset Key will serve as a teach function and input the sensor value currently being read
Adjustment Range: 0 to 100%
Default Value: 0.00

Display Point 1
Function: Provides the engineering unit value that will be displayed corresponding to the sensor input value set in the Scaling Point 1 parameter
Adjustment Range: -19999 to 99999
Default Value: 0.00

PARAMETER SEQUENCE

ScA1
Function: Switches the first sensor input value point (based on percentage of full scale) which will be used in establishing a curve for scaling sensor inputs into engineering unit values. Pressing the Reset Key will serve as a teach function and input the sensor value currently being read
Adjustment Range: 0 to 100%
Default Value: 0.00

dSI1
Function: Provides the engineering unit value that will be displayed corresponding to the sensor input value set in the Scaling Point 1 parameter
Adjustment Range: -19999 to 99999
Default Value: 0.00

Parameters:

- ScA1
- dSI1
- PGM

- Alarm Lock
- Help Prompt
- Scaling Point 1
- Display Point 1

Notes:
- Parameter names will not appear on the main display if the “Help” function has been disabled in Program Mode.
- Successive presses of the Program Key will scroll the display through the remaining parameters in the Program Mode. To exit Program Mode, hold the Program Key for 3 seconds.
- The Program Mode can be accessed from the Operation Mode by holding the Program Key for 3 seconds.

ScA1: Scaling Point 1
- Parameter: Sets the first sensor input value point (based on percentage of full scale) which will be used in establishing a curve for scaling sensor inputs into engineering unit values. Pressing the Reset Key will serve as a teach function and input the sensor value currently being read
- Adjustments: 0 to 100%
- Default Value: 0.00

dSI1: Display Point 1
- Parameter: Provides the engineering unit value that will be displayed corresponding to the sensor input value set in the Scaling Point 1 parameter
- Adjustments: -19999 to 99999
- Default Value: 0.00

PGM: Program Key
- Function: Enters the Program Mode
- Operation: Pressing the Program Key for 3 seconds will display the value for that parameter. The secondary display will indicate the one digit identifier for the parameter. The digit in the secondary display will flash to indicate the unit is in Program Mode. If the Scroll Key was pressed (instead of waiting 3 seconds), the unit is in Edit Operation, as indicated by the MSD flashing. If there had been no key activity for 3 seconds, press the scroll key to enter Edit Operation (MSD flashing). Use the scroll and edit buttons to change the value as in Operation Mode, described on page 6. Press the Program Key to enter any changes.
OPERATION

OTHER OPERATING DISPLAYS

Over Range Display: Appears if the process value becomes higher than the input full scale value.

Under Range Display: Appears if the process value becomes lower than the input full scale value.

SENSOR BREAK DISPLAY: Appears if the unit does not receive an input signal for two seconds.

UNDER RANGE DISPLAY: Appears if the process value becomes lower than the input full scale value.

CHANGING AN ALARM VALUE

DEFAULT DISPLAY IS THE PROCESS VALUE.

Use the Scroll Key to move from left to right and highlight the digit that needs to be changed. Wrap around will occur from the least significant to the most significant digit.

Use the Down Key to decrement the digit until the desired value appears. The display will wrap around from 0 to 9.

After the desired digits have been changed, press the Program Key to enter the new value. The new value will appear on the main display without any flashing digits. Press the Program Key again and the parameter description will appear on the main display.

PARAMETER SEQUENCE

Input Range Function: Selects the DC input range
Adjustment Range:

<table>
<thead>
<tr>
<th>Adjustment Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20 mA</td>
</tr>
<tr>
<td>4-20 mA</td>
</tr>
<tr>
<td>10-50 mA</td>
</tr>
<tr>
<td>0-5 Volts DC</td>
</tr>
<tr>
<td>1-5 Volts DC</td>
</tr>
<tr>
<td>±100 mV</td>
</tr>
<tr>
<td>±1 Volts DC</td>
</tr>
<tr>
<td>±10 Volts DC</td>
</tr>
</tbody>
</table>
Power Supply Frequency

Function: Although the instrument is designed to handle either 50 or 60 Hz inputs automatically, it is necessary to set the input frequency of the primary input power.

Adjustment Range:

| 50 Hz | 60 Hz |

Default Value: 60

Alarm 1 Type

Function: Sets the action of the alarm to one of the following choices:

Adjustment Range:

| P_Hi | P_Lo | N One |

Process High: Alarm will activate when the process value equals or exceeds the Alarm 1 setting.

Process Low: Alarm will activate when the process value equals or is less than the Alarm 1 setting.

No Alarm: Alarm 1 will be inactive.

Default Value: Process High Alarm

Alarm 2 Type

Function: Sets the action of the alarm to one of the following choices:

Adjustment Range:

| P_Hi | P_Lo | N One |

Process High: Alarm will activate when the process value equals or exceeds the Alarm 2 setting.

Process Low: Alarm will activate when the process value equals or is less than the Alarm 2 setting.

No Alarm: Alarm 2 will be inactive.

Default Value: No Alarm

Total

Displays the total value based upon integration of the input signal using a programmable time base. The value can be reset (only while being displayed) by pressing the Reset Key.

Alarm 1 Elapsed Time

Displays the accumulated amount of time the alarm 1 condition was present. This value will continue to accumulate until it is reset by pressing the Reset Key (while the value is being displayed). The value is displayed in mm:ss up to 99 min 59 secs, then changes over to mmm.m

* Parameter descriptions will not appear on the primary display if the “Help” function has been disabled.
OPERATION

FRONT PANEL

- **Key Functions**
 - **Down Key**: In Operation Mode: Used in Edit Operation to decrement the digit highlighted by the Scroll key. In Program & Config. Modes: Used in Edit Operation to decrement the digit highlighted by the Scroll key, if the setting is a numerical value, or present the next in the series of choices for that parameter.
 - **Scroll Key**: In All modes: Moves the unit into Edit Operation, which is indicated by the left most digit flashing. Wrap around will occur from least significant digit to most significant digit.
 - **Program Key**: In Operation Mode: Used to move between the process value display & the presets and to enter an edited preset value. Holding down for 3 seconds will cause the unit to enter to Config. Mode.
 - **Reset Key**: In Operation Mode: Resets a latched alarm if pressed while the process value is being viewed. Pressing this key while viewing the max or min value will cause those values to be reset. In Program & Config. Modes: No function.
 - **Down & Scroll**: In All modes: Will abort an Edit Operation and return the preset/parameter to its previous value.

Display Functions

- **Primary Display**: In Operation Mode: Default display is the Process Value. Can be scrolled using the program key to display other Operation Mode values. If the "Help" function is enabled, this display will first show the parameter description for 3 seconds (example - page 6).
 - In Program & Config. Modes: Displays the value or selection for the current parameter. If the "Help" function is enabled, this display will first show the parameter description for 3 seconds (example - page 7).

- **Secondary Display**: In Operation Mode: Provides an alpha or numeric identification of the value on the primary display. This display is blank when the Process Value is being shown.
 - In Program & Config. Modes: Provides a 1 digit alpha or numeric character to indicate which parameter value is being shown on the primary display.

Output Indicators

- **Output 1**: Illuminates when Output 1 and/or Output 2 is active.
 - In Program & Config. Modes: No function.

CONFIGURATION

CONFIGURATION MODE Continued

Output 1 Usage

Function: Determines how the transistor and relay for output 1 will operate

- **Alarm 1, Non latching, Direct Action**: The output will be On when Alarm 1 is inactive, and turn Off when the Alarm 1 condition is no longer present
- **Alarm 1, Non latching, Reverse Action**: The output will be On when Alarm 1 is active, and turn Off when the Alarm 1 condition is present
- **Alarm 1, Latching, Direct Action**: The output will be On when Alarm 1 is activate, and turn Off only when reset via the front panel
- **Alarm 1, Latching, Reverse Action**: The output will be On when Alarm 1 is inactive, and turn Off only when reset via the front panel

Output 2 Usage

Function: Determines how the transistor and relay for output 2 will operate

- **Logical OR of Alarm 1 & 2, Direct Action**: The output will be On when a logical OR condition between Alarm 1 and Alarm 2 is present
- **Logical OR of Alarm 1 & 2, Reverse Action**: The output will be On when a logical OR condition between Alarm 1 and Alarm 2 is not present
- **Default Value: Alarm 2, Direct Action**

Default Values

- **Alarm 1, Non latching, Direct Action**: 0
- **Alarm 1, Latching, Direct Action**: PGM
- **Logical OR of Alarm 1 & 2, Direct Action**: PGM
- **Logical OR of Alarm 1 & 2, Reverse Action**: PGM

Default Value: Alarm 2, Direct Action
INSTALLATION

REAR TERMINAL CONNECTIONS

Control/Digital Inputs
A digital input board, which utilizes Terminals #16 & #17, can be installed as an option. The input can be programmed in Configuration Mode to perform one of two functions:
- Tare: When activated, the unit will create an automatic offset by referencing the currently measured value as the new zero point.
- Security: When activated, the Program and Calibration Modes will not be accessible from the front panel.

Please note that this option is mutually exclusive with the RS-485 serial communication option.

Input Power
For an AC powered unit, Terminal #13 serves as the line or Hot side connection for AC powered units and as the positive side for DC powered units. The neutral side for AC powered units and the negative side for DC powered units are connected to Terminal #14.

Serial Communication
An RS-485 communication board, utilizing ASCII protocol, can be installed as an option. Terminals #16 & #17 serve as the B and A connections respectively, while Terminal #18 is connected as the common.

Linear Output
An option board may be installed that provides a 10 bit linear output signal relative to the Process Value. Terminal #12 serves as the connection, and Terminal #10 is the negative side. The default range of the output is 4-20 mA, but can be changed via the Configuration Mode to 0-20 mA, 0-10 VDC, 2-10 VDC, 0-5 VDC, or 1-5 VDC.

Terminals 4, 11, & 15 are not used.
INSTALLATION

PANEL MOUNTING

The instrument can be mounted in a panel with a thickness of up to 6mm. The cutout(s) should be made based on the recommended panel opening illustrated in the drawing above.

Insert the unit in the panel through the cutout. Ensure that the panel gasket is not distorted and the instrument is positioned squarely against the panel. Slide the mounting clamp into place on the instrument, as shown to the left, and push it forward until it is firmly in contact with the rear face of the mounting panel and the tabs on the bracket arm are seated in the mounting grooves on the side of the unit.

The electronic components of the instrument can be removed from the housing after installation without disconnecting the wiring. To remove the components, grip the side edges of the panel and pull the instrument forward. Take note of orientation of the unit for subsequent replacement in the housing.

APPENDIX A

SPECIFICATIONS

Process Input

Range: To 50 mA, ±10 Volts DC, ±100 mV
Accuracy: ±0.01% of span
Sample Rate: 700 ms
Resolution: 14 bits
Sensor Break: Detected within 2 seconds

Control Inputs

Type: Sourcing, Edge Sensitive
Logic: Low ≤ 2.0 VDC, High > 3.0
Impedance: 4.7 KΩ to 0V - Sourcing
Response Time: 25 ms
Function: Programmable

Outputs

Solid State: NPN open collector, 30 VDC max, 100 mA max.
Relay: SPDT, 5A resistive @ 110VAC
Latency: 75 μs seconds, plus 8 ms for relay pull-in

Linear Outputs

Ranges: 0-20mA, 4-20mA, 0-10V, 2-10V, 0-5V, 1-5V
Accuracy: ±0.25% (mA at 250Ω, V at 2kΩ); degrades linearly to ±0.5%
Resolution: 8 bits in 250ms (10 bits in 1s typ.)
Update: Approximately 4/s
Load Impedance: mA Ranges: 500Ω max.; V Ranges: 500Ω min.

Approvals

General: CE
EMC Susceptibility: Complies with EN50082-1: 1992, EN50082-2-1, 1995
Safety: Complies with EN61010-1: 1993

Communication

Type: Serial asynchronous, UART to UART
Data Format: Open ASCII: One start bit, even parity seven data bits, one stop bit
Physical Layer: RS-485
Maximum Zones: 99
Baud Rate: Selectable from 9600, 4800, 2400, or 1200

Electrical

Supply Voltage: 96-264 VAC, 50/60 Hz, or 20-50 VAC/VDC
Power Consumption: 4 Watts
Access. Power Supply: 24 VDC @ 30 mA

Display

Type: Red/Green, 7 segment LED, 5 digits primary display, single digit secondary display
Height: 0.71" (18mm) primary display, 0.3" (7mm) secondary display
Annunciators: Output 1 & 2 status

Physical

Dimensions: 48mm x 96mm, 110mm deep
Mounting: Panel mount (mounting bracket supplied), 45mm x 92mm cutout
Terminals: Screw type - combination head
Front Panel Rating: NEMA 4X/IEC IP65
Case Material: GE Lexan 940
Weight: 0.56 lbs.

Environmental

Operating Temp.: 0° to 55° Celsius, 32° to 131° Fahrenheit
Storage Temp.: -30° to 60° Celsius, -4° to 170° Fahrenheit
Relative Humidity: 20% to 95% non-condensing
Technical Manual

GK Series DC Process

Introduction
Your Anderson GK Series DC Process is one model in a family of 1/8 DIN units which offers breakthrough display technology as well as easy-to-program single-line parameters. Designed to provide instant visual feedback regarding an application’s key input value, the GK Series unit not only has a 0.71” high LED display (27% larger than other 1/8 DIN units), but also the ability to change display color based on process status (programmable parameter in Operation Mode). Easy programming is made possible via a help function and a secondary legend display.

This manual will guide you through the installation and wiring of your GK Series unit with information on proper panel mounting and rear terminal layout and wiring instructions. In addition, the instrument’s operation, programming, and configuration modes are thoroughly explained. The Operation Mode provides day to day operation and allows editing of preset values. The Program Mode enables the configuration of various parameters prior to initial operation. These parameters include those for basic configuration as well as other settable features which will enhance the functionality and usability of the device. The Configuration Mode allows selection of how outputs and special functions are utilized.

This manual also provides information on the GK Series DC Process’ alarms; transistor, relay, and linear outputs; product specifications; and ordering and warranty procedures.

Features
- AWESOME 0.71” high digit LED display
- Programmable color change display based on an event
- Programmable help function and secondary legend display
- High and low alarm outputs
- mA inputs to 50mA, DCV inputs to ±10 Volts and ±100 mV
- Tare function
- Standard outputs: two NPN transistors & one relay (optional 2nd relay)
- 100 ms sample time with 0.03% accuracy
- Optional RS-485 plug in card
- CE approved

Index
Installation
Panel Mounting
Wiring
Operation
Front Panel
Operation Mode
Programming
Program Mode
Configuration
Configuration Mode
Appendix A
Specifications
General
Ordering Information
Warranty

Technical Manual

GK Series DC Process

ORDERING INFORMATION

Standard products manufactured by the Company are warranted to be free from defects in workmanship and material for a period of one year from the date of shipment, and products which are defective in workmanship or material will be repaired or replaced, at the option of the Company, at no charge to the Buyer. Final determination as to whether a product is actually defective rests with the Company. The obligation of the Company hereunder shall be limited solely to repair and replacement of products that fail within the foregoing limitations, and shall be conditioned upon receipt by the Company of written notice of any alleged defects or deficiency promptly after discovery within the warranty period, and in the case of components or units purchased by the Company, the obligation of the Company shall not exceed the settlement that the Company is able to obtain from the supplier thereof. No products shall be returned to the Company without its prior consent. Products which the Company consents to have returned shall be shipped F.O.B. the Company’s factory. The Company cannot assume responsibility or accept receipts for unauthorized repairs to its components, even though defective. The life of the products of the Company depends, to a large extent, upon the type of usage thereof, and THE COMPANY MAKES NO WARRANTY AS TO FITNESS OF ITS PRODUCTS FOR SPECIFIC APPLICATIONS BY THE BUYER NOR AS TO PERIOD OF SERVICE UNLESS THE COMPANY SPECIFICALLY AGREES OTHERWISE IN WRITING AFTER THE PROPOSED USAGE HAS BEEN MADE KNOWN TO IT.

THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE.

ORDERING INFORMATION

Power Supply
0 90 - 264 VAC
2 20 - 90 VAC/VDC

Serial Communication
0 None
5 RS-485
6 Digital Input (available w/analog input only)

Linear Output
0 None
3 Linear Output (not available w/digital functions: 1, 6, 7, 8 & 9)

2nd Relay
0 None
1 2nd Relay (not available w/digital functions: 1, 6 & 7)

INPUT TYPE
C Digital Input
A Analog Input

FUNCTION (Digital Input Only)
1 Totalizer
2 Position Ind.
3 Rate Meter
4 Rate w/ Total
5 Rate w/ elapsed time
6 Elapsed Time
7 Single Preset Ctr.
8 Dual Preset Ctr.
9 Batch Ctr.

FUNCTION (Analog Input Only)
1 Temperature
2 DC Process (4-20mA)
3 AC Volts/Amps
5 DC Volts/Amps
6 Strain Gauge

WARRANTY

Standard products manufactured by the Company are warranted to be free from defects in workmanship and material for a period of one year from the date of shipment, and products which are defective in workmanship or material will be repaired or replaced, at the option of the Company, at no charge to the Buyer. Final determination as to whether a product is actually defective rests with the Company. The obligation of the Company hereunder shall be limited solely to repair and replacement of products that fail within the foregoing limitations, and shall be conditioned upon receipt by the Company of written notice of any alleged defects or deficiency promptly after discovery within the warranty period, and in the case of components or units purchased by the Company, the obligation of the Company shall not exceed the settlement that the Company is able to obtain from the supplier thereof. No products shall be returned to the Company without its prior consent. Products which the Company consents to have returned shall be shipped F.O.B. the Company’s factory. The Company cannot assume responsibility or accept receipts for unauthorized repairs to its components, even though defective. The life of the products of the Company depends, to a large extent, upon the type of usage thereof, and THE COMPANY MAKES NO WARRANTY AS TO FITNESS OF ITS PRODUCTS FOR SPECIFIC APPLICATIONS BY THE BUYER NOR AS TO PERIOD OF SERVICE UNLESS THE COMPANY SPECIFICALLY AGREES OTHERWISE IN WRITING AFTER THE PROPOSED USAGE HAS BEEN MADE KNOWN TO IT.

THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE.