PRODUCT DESCRIPTION

The Anderson-Negele ILM is an all integral non-contacting Conductivity sensor designed for hygienic applications in the food and dairy industry. Offering dual analog outputs for conductivity measurement and temperature and multiple range selections the ILM is optimized for use in the control of CIP chemical concentration and phase separation applications.

SPECIFICATIONS

Process connections
- thread G1
- sensor, combined with Negele-weld-in sleeves
 - max. 20 Nm

Materials
- connector head
- thread connection
- bobbin case
- window in lid
- stainless steel 1.4305 (303), Ø 89 mm
- stainless steel 1.4305 (303), SW 36 mm
- PEEK, FDA-number (21CFR177.2415)
- PMMA

Temperature Ranges
- ambient
 - -10...+60 °C
- process
 - 0...100 °C
- up to 140 °C/30 minutes max.

Pressure
- 10 bar max.

Protection Class
- IP 69 K (with PG cable gland and suitable cable)

Reproducibility
- of conductivity
 - ≤ 1 % of measurement value

Resolution
- measurement range
 - < 10 mS/cm: 1 µS/cm
 - 10...50 mS/cm: 10 µS/cm
 - 100...999 mS/cm: 100 µS/cm

Accuracy
- span
 - ±2 % of upper range value
- offset
 - ±20 µS/cm

Long Term Stability
- span
 - ±0.5 % of upper range value
- offset
 - ±20 µS/cm

Accuracy of the Temperature Output
- ≤ 100 °C
 - 0.5 °C max.
- 100...150 °C
 - 1.0 °C max.

Electrical Connection
- cable gland: 2 x M16 x 1.5
- cable connection supply: 2 x M12 plug 1.4305
- supply: 18...36 V DC max. 190 mA

Inputs
- range switching: E1 and E2 (24 V DC) galvanically isolated

Outputs
- conductivity
 - analog 4...20 mA short-circuit-proof
- temperature
 - analog 4...20 mA short-circuit-proof

LC-Display
- with backlight: 2 x 8-digits

Measurement Principle
- wearless
- inductive

Comparison ILM-2 / ILM-3

<table>
<thead>
<tr>
<th></th>
<th>ILM-2</th>
<th>ILM-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Ranges Conductivity</td>
<td>0...2 mS/cm up to 0...999 mS/cm</td>
<td>0...0.5 mS/cm up to 0...999 mS/cm</td>
</tr>
<tr>
<td></td>
<td>12 measurement ranges selectable</td>
<td>14 measurement ranges selectable</td>
</tr>
<tr>
<td></td>
<td>3 ranges extern switchable</td>
<td>4 ranges extern switchable</td>
</tr>
<tr>
<td>Measurement Ranges Temperature</td>
<td>0...+150 °C</td>
<td>-20...+150 °C</td>
</tr>
<tr>
<td></td>
<td>1 measurement range fix presetted</td>
<td>7 measurement ranges selectable</td>
</tr>
<tr>
<td>Temperature Coefficient (TC)</td>
<td>0...5 %/K, free adjustable</td>
<td>0...5 %/K, free adjustable</td>
</tr>
<tr>
<td></td>
<td>1 TC for all measurement ranges</td>
<td>1 TC for each measurement range</td>
</tr>
</tbody>
</table>
MOUNTING

• The ILM is designed with a G1” clean-adapt connection. Always use approved Anderson Negele adapters when using this product.
• When used properly with the AMC-351-DNXX adapter the ILM will provide a tri-clamp fitting for a process connection and a device that is compliant with 3-A standards. When attaching the AMC to the ILM it is important to align the leak detection port located on the adapter with the flow through hole of the torroidal sensor. When the sensor is used in vertical piping configurations this will locate the leak detection port at the lowest possible point allowing any liquid internal to the fitting to exit the fitting and satisfying 3-A installation requirements. It is important to turn the head of the sensor in relation to the fitting after the connection has been tightened as this may damage the sensor.
• The sensor location in the piping should be such that the sensor stays immersed in liquid during the needed measuring periods. This can be readily achieved by installing in a vertical line that flows upward.
• Avoid locations where high vibration is a concern as this may create false indication.

WIRING

With M12 plug

<table>
<thead>
<tr>
<th>M12 plug left (4 pin)</th>
<th>M12 plug right (5 pin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>outputs 4...20 m</td>
<td>supply/control voltages</td>
</tr>
<tr>
<td>1: output conductivity +</td>
<td>1: supply +24 V DC</td>
</tr>
<tr>
<td>2: output temperature +</td>
<td>2: digital input E2</td>
</tr>
<tr>
<td>3: output temperature -</td>
<td>3: 0 V (measurement range switching)</td>
</tr>
<tr>
<td>4: output conductivity -</td>
<td>4: supply -</td>
</tr>
<tr>
<td>5: digital input E1</td>
<td>5: digital input E1</td>
</tr>
</tbody>
</table>

With S12 option

<table>
<thead>
<tr>
<th>Left (4 pin)</th>
<th>Right (5 pin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: conductivity -</td>
<td>1: output temperature +</td>
</tr>
<tr>
<td>2: conductivity +</td>
<td>2: digital input E2</td>
</tr>
<tr>
<td>3: 0 V (measurement range switching)</td>
<td>3: supply +24 VDC</td>
</tr>
<tr>
<td>4: supply -</td>
<td>4: supply -</td>
</tr>
<tr>
<td>5: digital input E1</td>
<td>5: digital input E1</td>
</tr>
</tbody>
</table>

Changing the Measuring Range

The ILM is factory set to:
Measurement range 1: 0-20 mS/cm = 4-20 mA (see programming to change)
TC-value: 2 %/K

It is possible to externally change the selected range
With the use of an external control voltage +24 V DC (18...36 V) range 2 (E1=24 V), range 3 (E2=24 V) or range 4 (E1=E2=24 V) can be selected (see “Wiring”).

The ILM-2 has only 1 TC that is effective for all measurement ranges and a fixed temperature output is that is set to 0...150 °C.

The ILM-3 has a separate temperature coefficient (TC) for each range and the measurement range of the temperature output can be selected from 7 preset ranges between -20...150 °C

Switching the measuring range via inputs

The digital control inputs E1 and E2 are galvanically isolated from supply voltage.

<table>
<thead>
<tr>
<th>E1</th>
<th>E2</th>
<th>Meas. Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4*</td>
</tr>
</tbody>
</table>

0=0VDC,1=24VDC,* ILM-3 only

Optimizing the temperature coefficient for a liquid

1. Adjust “TC” to 0 %/K (see Programming).
2. Dip sensor into liquid with 25 °C (77 °F).
3. Wait until the measurement value is stable.
4. Record the conductivity value from the display.
5. Warm up the liquid to 60 °C (140 °F) minimum. This will change the conductivity value on the display.
6. Wait until the measurement value is stable.
7. Select “TC” in the operation menu and adjust the temperature coefficient until the displayed measurement value is equal to the value noted at step 4.
PROGRAMMING MENU

Programming Keys

ILM-2 Programming

- **Temperature Coefficient Level TC**
 - Measurement Range 3 (E2 = 24 V)
 - Measurement Range 2 (E1 = 24 V)
 - Measurement Range 1 (E1, E2 0 V)

Display

- Conductivity and Temperature

Start

Status Messages

^-Symbol
"Current output conductivity overload", will be displayed if the measured value is higher than the selected measurement range.

I\(_{\text{out}}\): ca. 22 mA

4 (upper line) currently editable range

1 (lower line) currently activated measurement range

^-^-^-Symbol
the currently measured value is higher than the maximum measurement value (999 ms/cm)

I\(_{\text{out}}\): ca. 22 mA

\(\odot\)-Symbol
the adjoining value is now editable via arrow buttons

vvv -Symbol
inductor error/sensor break

I\(_{\text{out}}\): 2.4 mA

ILM-3 Programming

Temperature Output

- 4.20 m\(\Omega\) 0.150

Temperature Coefficient 4

- 4.20 m\(\Omega\) 0.80 mS

Measurement Range 4

- 14.8 mS 2.00%/K

Temperature Coefficient 3

- 4.20 m\(\Omega\) 0.85 mS

Measurement Range 3

- 14.8 mS 2.00%/K

Temperature Coefficient 2

- 4.20 m\(\Omega\) 0.20 mS

Measurement Range 2

- 14.8 mS 2.00%/K

Temperature Coefficient 1

- 4.20 m\(\Omega\) 0.20 mS

Measurement Range 1

- 14.8 mS 2.00%/K

Display Mode

After 1 min. the device switches automatically back to the display mode.

Display

Conductivity and Temperature

Start
CLEANING AND MAINTENANCE

The ILM is designed to be CIP/SIP at the temperature indicated in the specifications. Although the exterior is water-tight, high pressure washers should avoid the electrical connections.

TRANSPORTATION/STORAGE

- Do not store outside
- Store in an area that is dry and dust free
- Do not expose to corrosive media
- Protect from direct sunlight
- Avoid shock and vibration
- Storage temperature 32-104°F (0-40°C)

RETURNING FOR REPAIR

- Sensors and adapters need to be clean and must not be contaminated with hazardous material
- Pack appropriately to avoid damage to the sensor

DISPOSAL

- This instrument is not subject to the WEEE directive 2002/96/EG and the respective national laws
- Do not use municipal waste to dispose of this product. Use a specialized recycling center for disposal

DIMENSIONAL DRAWING